\$

## Earned Value Management (EVM)

Efficiency Notes - Project Controls Series

### What It Is

A project management technique that measures project performance and progress by combining scope, schedule and costs into a single integrated system of monitoring and reporting.

#### What You Need

- 1. A Project Plan (schedule, scope, costs)
- 2. What you plan to spend and what you expect to have done for the \$\$\$ spent X Activities Done by Y Date will cost \$MM
- 3. Metrics to quantify work % complete X Activities of equal effort or weighted

### Reading an S-Curve Report



**EVM is the industry standard method of tracking project progress on capital projects.** It improves communication, reduces project risk, provides better forecasting, better progress tracking and better project visibility.

- 4. Method to track work execution on Activities Actual % Complete Actual Costs Actual Hours Spent Actual Start / Finish
- 5. Formulas to calculate EV, CV and SV See back of page
- 6. Reports on \$ Expenditure vs. Time Planned, Actual, Earned, Variances



\$

# Earned Value Management (EVM)

Efficiency Notes – Project Controls Series

#### **Primary Data Points and Calculations**

| BAC | Budget At Completion<br>What you plan to spend for 100% complete         | BAC = Total Planned Cost         |
|-----|--------------------------------------------------------------------------|----------------------------------|
| PV  | Planned Value<br>What you plan to spend on what you plan to be completed | PV = BAC x (% Completed Planned) |
| AC  | Actual Cost<br>Actual cost of work performed                             | AC = SUM(Cost)                   |
| EV  | Earned Value<br>What you planned to spend on what's actually done        | EV = BAC x (% Complete Actual)   |

#### Variances and Calculations

| CV  | Cost Variance                                                             | CV = EV - Ac  | C            |
|-----|---------------------------------------------------------------------------|---------------|--------------|
|     | How far over or under budget am I?                                        | (-) = over    | (+) = under  |
| CV% | Cost Variance %                                                           | CV% = (CV)    | / (EV)       |
|     | How far over or under budget expressed as a %                             | (-%) = over   | (+%) = under |
| SV  | Schedule Variance                                                         | SV = EV - PV  | √            |
|     | How far ahead or behind schedule am I?                                    | (-) = behind  | (+) = ahead  |
| SV% | Schedule Variance %                                                       | SV% = (SV) /  | (PV)         |
|     | How far ahead or behind schedule expressed as a %                         | (-%) = behind | (+%) = ahead |
| VAC | Variance At Completion<br>Variance of total actual cost and expected cost | VAC = BAC -   | - EAC        |

#### **Performance Indices**

Cost Performance Index CPI Ratio of planned spend on what's actually done to what's actually spent for the work delivered by reporting date

#### Schedule Performance Index

**SPI** Ratio of planned spend on what's actually done to planned spend on what you planned to have done by reporting date

#### Forecasts

| EAC | Estimate At Completion<br>Expected TOTAL cost for 100% complete]<br>Atypical - assumes similar variances seen will not occur in future | EAC = AC + ((BAC - EV) / CPI)) (typical) $EAC = AC + (BAC - EV) (atypical)$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| ETC | Estimate to Complete<br>Expected cost to finish REMAINING work                                                                         | ETC = EAC - AC                                                              |

Get smart forms, reports and processes on your tablet. www.industrialaudit.com/efficiency-notes (cost > plan) (cost = plan)

(cost < plan)

CPI = (EV) / (AC)

> 1 typically good

SPI = (EV) / (PV)

> 1 typically good

< 1 bad

< 1 bad

= 1 good

= 1 good

(ahead vs. plan) (behind vs. plan) (on plan)

WorkfaceEfficiency<sup>®</sup>